MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction
نویسندگان
چکیده
منابع مشابه
High-dimensional Principal Component Analysis
High-dimensional Principal Component Analysis by Arash Ali Amini Doctor of Philosophy in Electrical Engineering University of California, Berkeley Associate Professor Martin Wainwright, Chair Advances in data acquisition and emergence of new sources of data, in recent years, have led to generation of massive datasets in many fields of science and engineering. These datasets are usually characte...
متن کاملMultiscale principal component analysis
Principal component analysis (PCA) is an important tool in exploring data. The conventional approach to PCA leads to a solution which favours the structures with large variances. This is sensitive to outliers and could obfuscate interesting underlying structures. One of the equivalent definitions of PCA is that it seeks the subspaces that maximize the sum of squared pairwise distances between d...
متن کاملSketching for Principal Component Regression
Principal component regression (PCR) is a useful method for regularizing linear regression. Although conceptually simple, straightforward implementations of PCR have high computational costs and so are inappropriate when learning with large scale data. In this paper, we propose efficient algorithms for computing approximate PCR solutions that are, on one hand, high quality approximations to the...
متن کاملRobust Principal Component Regression
In this note we introduce a method for robust principal component regression. Robust principal components are computed from the predictor variables, and they are used afterwards for estimating a response variable by performing robust linear multiple regression. The performance of the method is evaluated at a test data set from geochemistry. Then it is used for the prediction of censored values ...
متن کاملBayesian regression based on principal components for high-dimensional data
Motivated by a climate prediction problem, we consider high dimensional Bayesian regression where the number of covariates is much larger than the number of observations. To reduce the dimension of the covariate, the response is regressed on the principal components obtained from the covariates, and it is argued that the PCA regression is equivalent to the original model in terms of prediction....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2017
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2016.1261710